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ABSTRACT

Multi-channel acoustic echo cancellation is basically composed of
two parts. One part is a multi-channel system identification prob-
lem which is nontrivial to solve. The other part, which is also
nontrivial, is the so-called double-talk detection problem. Near-
end speech detection is based on a test statistic. Recently, a new
double-talk test statistic based on the normalized cross-correlation
vector was proposed for the single-channel case. Obviously, in the
multi-channel case, there are several solutions, but what should
be the optimal one is not yet known. Then, a fundamental ques-
tion arises: how do we deal optimally with multiple channels? In
this paper, we generalize the idea of normalized cross-correlation
vector (single-channel) to the matrix case (multi-channel), de-
rive a frequency-domain version, and show how to combine both
the multi-channel frequency-domain adaptive filter and the multi-
channel double-talk detector.

1. INTRODUCTION

Multi-channel acoustic echo cancellation is basically composed of
two parts. One part is a multi-channel system identification prob-
lem which is nontrivial to solve; see [1], [2] for more details. The
other part, which is also nontrivial, is the so-called double-talk de-
tection problem [3]. When the multiple echo paths are identified
by a multi-channel adaptive filter, a function should be included to
freeze the adaptation whenever a near-end signal is detected, and
thereby avoid the divergence of the adaptive algorithm. This is the
role of a double-talk detector (DTD) [4]. Consequently, a suitable
DTD decision variable has to be found.

An “optimum”1 decision variable ξ for double-talk detection
should behave as follows:

(i) if double-talk is not present, ξ ≥ T ;
(ii) if double-talk is present, ξ < T .

The threshold T must be a constant (in this application), indepen-
dent of the data. Moreover, ξ must be insensitive to echo path
variations when there is no double-talk. A decision variable that
exhibits this behavior was proposed in [5] for the single-channel
case, using a new normalized cross-correlation vector.

In many acoustic signal processing problems such as, to name
a few, voice activity detection, time delay estimation, source lo-
calization, double-talk detection, etc, multiple microphone signals
are available. However, it is not obvious as to how all of this infor-
mation should be taken into account for best performance.

1Optimum in the sense that for a given probability of false alarm (of
double-talk), the probability of miss is minimized.

In the case of (multi-channel) double-talk detection, there are
at least three options. The first one is to consider only a single mi-
crophone and build a test statistic based on the normalized cross-
correlation vector between the loudspeaker signals and the chosen
microphone signal. This is the approach that was taken in [6], [7].
However, this approach may increase the probability of miss since
the microphones pick the near-end speech up with different levels
and different SNRs, depending on the position of the talker and
microphones. Furthermore, not all of this information is taken into
account in the decision variable. The second option is to use a test
statistic for each microphone, so that the decision made on one mi-
crophone is independent of the others. But a large amount of tests
may not be easy to handle and we may have some contradictory
results on the presence of a near-end talker. In this paper, a third
option is proposed which consists of using one test statistic that
combines all the (spatial sampling) information of the microphone
signals. This approach leads to a nice generalization of the normal-
ized cross-correlation vector to the normalized cross-correlation
matrix. By its nature, this method considers all the microphone
signals equally. Other possibilities based on this approach can be
derived but what will be the optimal choice is not yet known.

2. MULTI-CHANNEL ACOUSTIC ECHO
CANCELLATION

First, we assume that we have Q loudspeakers and P microphones.
We also assume that the system (room) is linear and time-invariant.
Acoustic echo cancellation consists of identifying Q echo paths
at each microphone so that in total, P Q echo paths need to be
estimated. We have P output (microphone) signals:

yp(n) =
Q∑

q=1

hT
qpxq (n) + vp(n), p = 1, 2, ..., P, (1)

where superscript T denotes transpose of a vector or a matrix,

hqp = [
hqp,0 hqp,1 · · · hqp,L−1

]T

is the echo path – of length L – between loudspeaker q and micro-
phone p,

xq (n) = [
xq (n) xq (n − 1) · · · xq (n − L + 1)

]T
,

q = 1, 2, ..., Q,

is the qth reference (loudspeaker) signal (also called the far-end
speech), and vp is the near-end speech added at microphone p.



We define the error signal at time n for microphone p as

ep(n) = yp(n) − ŷp(n)

= yp(n) −
Q∑

q=1

ĥ
T
qpxq (n), (2)

where

ĥqp =
[

ĥqp,0 ĥqp,1 · · · ĥqp,L−1

]T

are the model filters. It is more convenient to define an error signal
vector for all the microphones:

e(n) = y(n) − ŷ(n)

= y(n) − Ĥ
T

x(n), (3)

where

y(n) = HT x(n) + v(n),

v(n) = [
v1(n) v2(n) · · · vP (n)

]T
,

e(n) = [
e1(n) e2(n) · · · eP (n)

]T
,

y(n) = [
y1(n) y2(n) · · · yP (n)

]T
,

ŷ(n) = [
ŷ1(n) ŷ2(n) · · · ŷP (n)

]T
,

Ĥ =




ĥ11 ĥ12 · · · ĥ1P
ĥ21 ĥ22 · · · ĥ2P
.
..

.

..
. . .

.

..

ĥQ1 ĥQ2 · · · ĥQ P


 ,

x(n) =
[

xT
1 (n) xT

2 (n) · · · xT
Q(n)

]T
.

Having written the error signal, we now define the cost func-
tion

J = E{eT (n)e(n)} (4)

=
P∑

p=1

E{e2
p(n)}

=
P∑

p=1

Jp.

E{·} denotes the statistical expectation operator. The minimization
of (4) leads to the multi-channel Wiener-Hopf equation:

Rx x Ĥ = Rxy , (5)

where

Rx x = E{x(n)xT (n)} (6)

is the covariance matrix – of size (QL × QL) – of the reference
signals x, and

Rxy = E{x(n)yT (n)} (7)

is the cross-correlation matrix – of size (QL × P) – between x and
y.

It can easily be seen that the multi-channel Wiener-Hopf equa-
tion (5) can be decomposed in P independent Wiener-Hopf equa-
tions, each one corresponding to a microphone signal:

Rx x ĥp = rxyp , p = 1, 2, ..., P, (8)

where ĥp (resp. rxyp ) is the pth column of matrix Ĥ (resp. Rxy).
This result implies that minimizing J or minimizing each Jp inde-
pendently gives the same results. This makes sense from an iden-
tification point of view, since the identification of the impulse re-
sponses for one microphone is completely independent of the oth-
ers. However, as far as double-talk is concerned, it is preferable to
have a global and unique test statistic that takes into account the in-
formation of all the microphone signals, since the near-end speech
is picked-up by all the microphones with different levels. Choos-
ing one microphone signal and using a single test statistic based on
this signal is not enough. On the other hand, using P independent
decision variables will be much harder to handle (computational
complexity, inconsistency among the different tests, ...). Thus, the
approach taken here is to develop a unique test statistic by looking
at the covariance matrix Ryy of the microphone signals y.

In the following, we suppose that the covariance matrix Rx x
is invertible. To almost guarantee that, we may add (for Q > 1)
a non-linear (NL) transformation (or add perceptually acceptable
uncorrelated noise) to each input signal xq in order to reduce the
coherence of the signals two-by-two [2].

3. A NORMALIZED CROSS-CORRELATION MATRIX
FOR MULTI-CHANNEL DOUBLE-TALK DETECTION

For the single-channel case, it has been shown [5] that the so-called
normalized cross-correlation vector is well suitable for DTD. In
this section, we derive a decision variable based on a normalized
cross-correlation matrix for the multi-channel situation.

Suppose that v = 0P×1 (no near-end speech). In this case:

Ryy = E{y(n)yT (n)}
= HT Rx x H. (9)

Since y(n) = HT x(n), we have:

Rxy = Rx x H (10)

and (9) may be re-written as

Ryy = RT
xyR−1

x x Rxy . (11)

Now, in general for v 
= 0P×1,

Ryy = RT
xyR−1

x x Rxy + Rvv, (12)

where

Rvv = E{v(n)vT (n)} (13)

is the covariance matrix of the near-end speech v. Then from (11)
and (12), the following decision statistic is proposed,

ξ = 1√
P

‖Cxy‖E

= 1√
P

√
tr(CT

xyCxy)

= 1√
P

√
tr(RT

xyR−1
x x RxyR−1

yy ), (14)

where

Cxy = R−1/2
x x RxyR−1/2

yy (15)

is the normalized cross-correlation matrix between the two vectors
x and y.



Substituting (10) and (12) into (14),

ξ = 1√
P

√
tr[HT Rx x H(HT Rx x H + Rvv)−1]. (16)

It is easily deduced from (16) that for v = 0P×1, ξ = 1 and for
v 
= 0P×1, ξ < 1. So that we can set the threshold T = 1.

For the single-channel case (Q = P = 1), (15) becomes the
normalized cross-correlation vector between vector x1 and scalar
y1:

cx1 y1 = (σ 2
y1

Rx1x1)
−1/2rx1 y1, (17)

with σ 2
y1

= E{y2
1(n)}. The test statistic is now:

ξ = 1√
1
‖cx1 y1‖E

=
√

tr(cT
x1 y1cx1 y1)

= ‖cx1 y1‖2

=
√

rT
x1 y1(σ

2
y1Rx1x1)

−1rx1 y1 . (18)

Thus, the normalized cross-correlation matrix is a natural and ele-
gant extension of the normalized cross-correlation vector [5] to the
multi-channel case.

4. A FREQUENCY-DOMAIN APPROACH

In this section, a frequency-domain DTD is derived that will be
more useful in practice than its time-domain counterpart, because
it is much more efficient from a computational complexity point
of view.

We define the block error signal (of length L) for microphone
p as:

ep(m) = yp(m) − ŷp(m)

= yp(m) −
Q∑

q=1

Xq (m)ĥqp, p = 1, 2, ..., P, (19)

where m is the block time index, and

ep(m) = [
ep(mL) · · · ep(mL + L − 1)

]T
,

yp(m) = [
yp(mL) · · · yp(mL + L − 1)

]T
,

Xq (m) = [
xq (mL) · · · xq (mL + L − 1)

]T
.

In the frequency domain, we have:

ep(m) = y
p
(m) − G1

Q∑
q=1

Dq (m)ĥqp, (20)

where

ep(m) = F
[

0L×1
ep(m)

]
,

y
p
(m) = F

[
0L×1
yp(m)

]
,

G1 = FW1F−1,

W1 =
[

0L×L 0L×L
0L×L IL×L

]
,

Dq (m) = FCq (m)F−1,

Cq (m) =
[

X′
q (m) Xq (m)

Xq (m) X′
q (m)

]
,

ĥqp = F
[

ĥqp
0L×1

]
.

F is the Fourier matrix of size (2L × 2L) and Dq , q = 1, 2, ..., Q,
are diagonal matrices.

Minimizing the frequency-domain criterion

Jf =
P∑

p=1

E{eH
p (m)ep(m)} (21)

leads to the multi-channel Wiener-Hopf equation in the frequency
domain:

Sx x Ĥ = Sxy , (22)

where H denotes conjugate transpose and

Sx x = E{DH (m)G1D(m)},
D(m) = [

D1(m) D2(m) · · · DQ (m)
]
,

Ĥ =




ĥ11 ĥ12 · · · ĥ1P
ĥ21 ĥ22 · · · ĥ2P
...

...
. . .

...

ĥQ1 ĥQ2 · · · ĥQ P


 ,

Sxy = E{DH (m)Y(m)},
Y(m) = [

y1(m) y2(m) · · · y
P
(m)

]
.

Following the same philosophy as in Section 3, we define the
pseudo-coherence matrix:

�xy = S−1/2
x x SxyR′

yy
−1/2 (23)

with R′
yy = E{YH (m)Y(m)}. For Q = P = 1, �xy becomes:

γ x1 y1
= S−1/2

x1x1 sx1 y1 E−1/2{yH
1 (m)y1(m)}, (24)

which is also called the pseudo-coherence vector [6], [7]. The
difference between the true coherence and the pseudo-coherence
is a different normalization with respect to the signal y1.

We define the multi-channel frequency-domain decision vari-
able as:

ξf = 1√
P

‖�xy‖E

= 1√
P

√
tr(�H

xy�xy)

= 1√
P

√
tr(SH

xyS−1
x x SxyR′

yy
−1

), (25)

and it can be checked that for v = 0P×1, ξf = 1 and for v 
= 0P×1,
0 ≤ ξf < 1.

5. COMBINATION OF MULTI-CHANNEL
IDENTIFICATION AND DOUBLE-TALK DETECTION IN

THE FREQUENCY DOMAIN

In this part, it is shown how to combine both the adaptive identifi-
cation of the echo paths and the near-end speech detection. Since
the DTD will also be adaptive, two different multi-channel model
filters (one foreground and one background) will be used, like the
two-path model [8]. The background filter will be updated per-
manently to estimate the test statistic. Each time double-talk is
detected, the adaptation of the foreground filter (for identification)
will be halted.



A multi-channel frequency-domain adaptive algorithm can be
easily derived from the Wiener-Hopf equation. In this section, only
the algorithm is given [9], which is:

Ŝx x (m) = λfŜx x(m − 1) + (1 − λf)D
H (m)D(m), (26)

ef,p(m) = y
p
(m) − G1

Q∑
q=1

Dq (m)ĥf,qp(m − 1)

= y
p
(m) − G1D(m)ĥf,p(m − 1), (27)

ĥf,p(m) = ĥf,p(m − 1) + µG2Ŝ
−1
x x (m)DH (m)ef,p(m),

p = 1, 2, ..., P, (28)

where the subscript f stands for “foreground,” λf, 0 < λf < 1, is
an exponential forgetting factor, µ = µ′(1 − λf), 0 < µ′ ≤ 2, is
the adaptation step size, and

G2 = FW2F−1,

W2 =
[

IL×L 0L×L
0L×L 0L×L

]
.

The decision variable should be estimated as follows:

ξ̂2
f (m) = 1

P
tr[ŜH

xy(m)Ŝ
−1
x x (m)Ŝxy(m)R̂

′−1
yy (m)]

= 1

P
tr[ŜH

xy(m)Ĥb(m)R̂
′−1
yy (m)], (29)

where

Ŝxy(m) = λbŜxy(m − 1) + (1 − λb)D
H (m)Y(m) (30)

eb,p(m) = y
p
(m) − G1D(m)ĥb,p(m − 1) (31)

ĥb,p(m) = ĥb,p(m − 1) + (1 − λb)G2Ŝ
−1
x x (m)DH (m)eb,p(m)

p = 1, 2, ..., P, (32)

R̂
′
yy(m) = λbR̂

′
yy(m − 1) + (1 − λb)YH (m)Y(m), (33)

subscript b stands for “background,” and λb, 0 < λb < 1, is an
exponential forgetting factor. We must choose λb < λf (for a
faster tracking of the background filter used in the DTD) in order
that the DTD alerts the foreground filter before it diverges.

6. CONCLUSIONS

In the literature, a lot of attention has been given to the identifica-
tion part of multi-channel acoustic echo cancellation but little has
been done for near-end speech detection. Multi-channel double-
talk detection is not trivial and has to be investigated more deeply.
In this paper, some possibilities to handle this problem have been
proposed, centered on the use of the normalized cross-correlation
matrix as the test statistic. This is a natural extension of the nor-
malized cross-correlation vector used in the single-channel case
which has been previously discussed [5]. The advantage of the
proposed approach is that all the P microphone signals are taken
into account in one decision variable. We also applied this method
in the frequency domain and obtained a pseudo-coherence matrix.
Finally, an efficient way to combine acoustic echo cancellation and
double-talk detection in the frequency domain was proposed.
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